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Motivation

 Mammoth Mountain studied as a natural
analogue for large CO, leakage events

 Investigate spatio-temporal variability of
soil CO, fluxes and relationship to
meteorological parameters and topography
using chamber method

» Compare chamber and eddy covariance CO,
flux measurements at challenging site



ecent Activity




Study Site




Chamber Soil CO, Fluxes




Eddy Covariance Net Surface CO2 Flux

- Requires sufficiently long averaging
time, steady-state conditions;
assumes homogeneous surface

- Data filterered for systematic errors %,, =
- F, is integral of surface flux over 7= = \§
upwind footprint (m2-km? scale) that ——=

scales with measurement height P

-Additional parameters: Atmospheric pressure, temperature,
radiation, and humidity, soil temperature, moisture, and heat
flux
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Eddy Covariance Time Series
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Energy
Balance
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Net Radiation - Soil Heat Flux (W m2)

Latent heat flux (LE) = Fy;,o X latent heat of vaporization of water

- heat flux associated with evaporation (+) and condensation (-)

Sensible heat flux (H)=p c, T'W'

p = density dry air

P

¢, = heat capacity of water at constant P
T' = fluctuating sonic temperature
w' = fluctuating vertical wind speed
- heat flux associated with temperature gradient between surface and
atmosphere (+ when surface is rel. warm, - when atm. is rel. warm)

500



EC
Footprint

f- -isopleth

ﬂ(xm,ym,Zm)= ijﬂ(x',y',z'zzo)-f(xm -x',y, =¥,z —ZO)-dx'dy'

—00—00
n = value of measured quantity (e.g., flux) at point (x,,, v,,. z,,) originating from the source at the surface (x',y'z'=z,) with strength Q,,

f= the footprint (or source weight) function, a probabalistic weighting function that assigns a relative weight to each of the source
strengths Q,, depending on separation distance between the measurement and the source

fis small for small separation distances, rises to a maximum with increasing distance, then falls off as separation is increased.

For fluxes, f1s determined based on 2-D advection-diffusion equation. Depends on mean ws, direction, atmospheric stability, surf. rough.



Chamber-Eddy Covariance Comparison
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Average Daily Flux Comparison
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Summary

» Large, previously undocumented, spatio-
temporal variations in soil CO, flux over
multiple days associated with a weather front
observed by AC method

» Potential effects of topography and
meteorological parameters should be
considered prior to the placement of continuous
monitoring devices and interpretation of time
series of data




Summary

* EC deployed at a site that challenged the
basic assumptions of the measurement

» Based on energy balance closure, EC
performed well.

* Moderate to good correlation between AC
and EC fluxes based on footprint modeling
observed



Summary

e Sources of error to consider in chamber-EC
comparisons:

— Heterogeneous CO, source distribution, complex terrain
introduce error into EC measurement and footprint
modeling.

— Temporally varying source flux distribution difficult to
capture with chamber measurements on time scales less
than inter-daily.

* EC can be used to monitor surface fluxes in
challenging environments, but data gaps must be
tolerated. EC best used 1n conjunction with
complementary AC method.



Thank you
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Research and Technology (ZERT) and the Ministry

of Economy, Trade and Industry (METI) of Japan.
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